| Purpose of Issue | Rev | Date of Issue | Author | Agreed | Approved | |---------------------------|-----|---------------|----------|--------|----------| | Draft Issued to PSC | 0 | August 1996 | DJM/RJvF | | | | Second Draft Issue to PSC | 1 | February 1997 | Doul. | Ato | ASA | "This document has been prepared by MSL Engineering Limited for the Participants of the Joint Industry Project on Development of Grouted Tubular Joint Technology for Offshore Strengthening and Repair. This document is confidential to the Participants in the Joint Industry Project, under the terms of their contract for participation in the project." # JOINT INDUSTRY PROJECT DEVELOPMENT OF GROUTED TUBULAR JOINT TECHNOLOGY FOR OFFSHORE STRENGTHENING AND REPAIR **Draft Final Report** DOC REF C14100R020 Rev 1 FEBRUARY 1997 273.B MSL Engineering Limited MSL House 5-7 High Street, Sunninghill, Ascot, Berkshire. SL5 9NQ Tel: + 44 (0)1344 874424 Fax: + 44 (0)1344 874338 C14100R020 Rev 1 February 1997 Page 1 of 98 | NUMBER | DETAILS OF REVISION | |--------|--| | 0 | Draft issued to PSC, August 1996 | | 1 | Second draft issue to PSC, February 1997 | | | | | | | | | | | · | | | | | | | | | | | | | | | | | | - | • | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | · | | | | | | | | | | C14100R020 Rev 1 February 1997 Page 2 of 98 #### **SUMMARY** The document presents a detailed description and the results of a test programme examining the effect of complete grout filling of the chord members of tubular joints on SCF behaviour and ultimate bending strength. The results have been used as a basis for generating new guidance or confirming previously uncorroborated guidance in these areas. An initial study was performed to investigate the effects of preload history on subsequent SCF behaviour so that appropriate testing procedures could be specified with which to conduct the tests. A full test programme was conducted on five T joints and seven DT joints of various geometries ($0.4 \le \beta \le 1.0$ and $12 \le \gamma \le 26$) fabricated to industry practice and using pipes up to 406mm in diameter. Typically, each joint in the programme was subjected to the following tests: - SNCF measurement, on both the brace and the chord sides of the weld, in the as-welded condition for axial compression, axial tension, in-plane bending (IPB) and out-of-plane bending (OPB) on the braces. - SNCF measurements in the grouted condition for the same four load cases following the selected preload. - An ultimate load test in either IPB or OPB. A large test frame was specifically designed and fabricated to apply axial tension, axial compression, IPB and OPB loads. The specimens were of relatively large scale (i.e. 406mm diameter chord members). Specimen size is an important issue when considering local behaviour such as SCFs and especially when grouted joints are involved. All specimens were instrumented with strip gauges and single element gauges. The strip gauges contained five individual single element strain gauges at 2mm spacings, two of which were unused. At each measurement location (e.g. chord crown) a strip gauge and a single element gauge were placed on a line orthogonal to the weld. The first gauge of the strip was placed 0.4 x (T or t) but not less than 4mm. The single element gauge was placed at the HSE recommended last gauge position. C14100R020 Rev 1 February 1997 Page 3 of 98 As-welded SCF/SNCF ratios are well documented so it remained to establish the SCF/SNCF ratio for specimens in the grouted condition. The first grouted specimen to be tested was instrumented with additional rosette gauges. The rosette gauges established that the grouted SCF/SNCF ratio remains consistent with the as-welded ratio for all load cases. In addition to strain gauges, transducers were mounted for measurement of deflection. The deflection measurements were used to establish deformation local to the joint under axial load or bending moment and overall deformation under bending. Load cells, or strain gauges on tie rods/bars, were used to measure applied load for the various load cases. The first grouted specimen was subjected to a preload investigation to establish the effects of loading history on measured strain concentration factors (SNCFs). SNCFs were measured after each application of compression/tension preload. The preload levels were increased in 10 - 20% increments of ISO predicted as-welded joint capacity up to approximately 130%. The preload applied to the remaining specimens was based on the results of the preload investigations. Prior to the preload investigations, all specimens were subjected to as-welded SNCF measurements. Table Summ-1 presents a summary of the derived as-welded SCFs with predicted SCFs using Efthymiou and Lloyds parametric equations. The majority of predicted as-welded SCFs are to within 15% of the measured values. SNCF measurements were also taken for all specimens in the grouted condition. A number of measurements were taken for each specimen for increasing preload levels. An SCF/SNCF ratio of 1.2 was used to convert SNCFs to SCFs. Subsequent grouted SCFs presented in Table Summ-2 represent those derived from measurements taken after a preload level of 60% of ISO as-welded joint capacity. Table Summ-2 also presents the derived grouted SCFs using formulations derived as part of the project. Typically the as-welded SCF is smaller than the grouted SCF. The ratio of grouted SCF to as-welded SCF is referred to as the Reduction Factor (RF). RFs derived from the measured grouted SCF over measured as-welded SCF, and measured grouted SCF over as-welded SCF, derived C14100R020 Rev 1 February 1997 Page 4 of 98 using parametric formulae, were used to develop equations to predict RFs for the two scenarios. Table Summ-3 presents the measured RFs and the derived RFs. The final phase of testing consisted of ultimate strength tests. The specimens were tested in either in-plane bending or out-of-plane bending. Table Summ-4 presents the measured results and corresponding predicted values. The predicted values are well correlated to the measured values. The data from the programme are fully reported in various appendices and these have been assessed to enable firm recommendations to be made with respect to estimating SCFs and ultimate strength behaviour of grouted joints. | ٳ | Ax-c | 3.08 | 1.85 | 0.29 | 3.53 | 1.57 | 2.50 | 2.62 | 8: | 1.21 | 2.52 | 1.98 | 1.16 | 2,62 | 1.36 | 2.58 | | 2.35 | 54. | 90.0 | 2.35 | 1.32 | 0.86 | 2.27 | <u>2</u> . | 1.23 | 1.84 | 1.45 | 900 | <u>4</u> . | <u>13.</u> | 1.18 | 1.42 | 1.46 | 0.52 | 1.42 | 1:31 | 1.26 | |----------|--|---|--
--	--	--	--
---	--	--	----------
--	---	---	--
--	------------	--	--
--	--	--	--
--	--	---	--
--	--	--	--
--		٤	7.5¢
393	4.00	4.02	5.20
90.0	0.672	19.973	8.62
Strain Gauge Positions Preload Investigation Sequence APPENDIX H. Transducer Positions APPENDIX F. APPENDIX J. APPENDIX I. Loading Conditions and Dimensions APPENDIX K. Preload Investigation Results APPENDIX L. As-welded SNCF Measurements APPENDIX M. Grouted SNCF Measurements APPENDIX N. Ultimate Strength Test Results APPENDIX O. Photographs of Failures for Ultimate Tests APPENDIX P. Local Joint Flexibilities Development of Measured Grouted SNCF/Measured As-welded APPENDIX Q. **SNCF** Reduction Factors APPENDIX R. Development of Measured Grouted SNCF (x 1.2)/Efthymiou Aswelded SCF Reduction Factors APPENDIX S. Summary As-welded and Grouted SCFs/RFs C14100R020 Rev 1 February 1997 Page 13 of 98 # NOMENCLATURE D	T	Wall thickness of chord	
al⁽⁷⁾ summarise the results of ten T joint tests, in which the chords of five specimens were reinforced with a grouted pile, i.e. grout was placed in the annulus and in the pile. Unfortunately, no thickness values for the joints are given in the paper. Lalani et al⁽⁸⁾ report on a series of elastic tests (axial and bending) and an ultimate balanced axial load test on a non-overlapping grouted K-joint. References 9 and 10 report on a series of elastic tests (axial and bending) on a grouted T joint. Marshall⁽¹¹⁾ reviews SCF formulations for simple steel reinforced and double-skin/grouted joints. Marshall proposed that the γ value in SCF equations can be modified to take account of the additional stiffness for grouted joints. The effective thickness is defined as: $$T_e = ((T^3 + T_p^3)/T)^{0.5}$$ The effective thickness is limited to 2T, compared with the Lloyds' limitation of 1.75T. Brown et al⁽¹²⁾ report on a series of elastic tests (axial and bending) and fatigue tests on two grouted T joints. Page 20 of 98 Review of the available literature indicates that much of the testing reported is of an ad hoc nature and addresses technology specific to an identified problem. In particular, the number of tests carried out on fully grouted specimens with varying geometric parameters are limited. C14100R020 Rev 1 February 1997 Page 21 of 98 # 2. TEST SPECIMENS # 2.1 <u>**T-Joints**</u> The configuration and nominal dimensions of the T-joints are shown in Figure 1-1 and Table 2-1. The chord length is equal to 6 times the chord diameter, i.e. $\alpha=2L/D=12$. The brace length is equal to 5 times the brace diameter.	Test series	and nomina	dimensions
Test specimens T1, T3, T5, DT2, DT3, DT4, DT5 and DT6 were welded with a KRYO 1 electrode and specimens T7, T9, DT8 and DT9 were welded with a Safdry 58 electrode. The welding procedures are presented in Appendix A ### 2.6 Measured Dimensions ## 2.6.1 Circular Hollow Sections for the Specimens The actual dimensions for the T-joints and DT-joints were determined by measuring the wall thickness and diameter at several locations on the test specimens and on separate pieces of left-over pipe material, from which the specimens were fabricated. (These separate pieces were used for the determination of material properties). For the fabrication of test specimens, eleven different tubulars were used. Wall thickness measurements were taken using a micrometer for the DT-joint chords at 90° intervals at one chord end. These were combined with micrometer measurements taken at 90° intervals on each end of the associated tubulars used in specimen fabrication to provide an averaged wall thickness. In addition the chord and brace wall thicknesses were measured using ultra-sonic methods. The measurements were taken at 90° intervals at near to the fabricated specimen joint. The results are presented in Appendix E. The following Table 2-8 presents a summary of diameter and wall thickness measurements. Page 30 of 98	Specimen	Ch	ord
in-plane bending loading condition, the moment was applied by pulling the brace ends with bars attached to jacks. The load was measured with a dynamometer. The maximum bending moment applied to the joint was taken as the load at the brace end times the distance to the intersection of the centrelines of chord and braces. The load was measured by a 200 kN or 800 kN dynamometer. The strain gauges on the braces were used to verify the applied bending moment. Similarly, the out-of-plane bending moment was applied by a tensile bar at the end of the braces. The chord was restricted from torsion by mounting plates attached to C14100R020 Rev 1 February 1997 Page 39 of 98 the chord ends. The applied loads were again measured at each end by a 200 kN or 800 kN dynamometer. The strain gauges on the braces were again used to verify the applied bending moment. Figure 4-1: Test rig for T-joints C14100R020 Rev 1 February 1997 Page 40 of 98 # 4.3 Test Rig and Loading System for DT-joints The test rig for DT-joints is presented in Figure 4-2. The axial load in the braces was applied by a hydraulic jack at one brace end. The other brace end was axially restrained. For the axial compression loading, a spherical bearing was used to assure the required end conditions. For the axial tension loading condition, the tensile loading was applied to one brace end by means of four or six bars, which were equally loaded. The chord ends were restrained against out-of-plane movement by the attachment of mounting plates on the chord ends to the test frame. During axial loading of the DT-joint, the compression load was recorded by a 500 kN or 4000 kN dynamometer. The dynamometer used depended on specimen size and therefore the required load level. The axial tension loading was recorded by four or six bars instrumented with strain gauges. The strain gauges on the braces were used to verify the applied load. For the in-plane-bending load, one chord end was pushed with a hydraulic jack while the brace ends were restrained against movement in the direction of the chord axis. Movement of the brace end in the axial direction of the brace and rotation of the brace end were, however, allowed. The chord was supported in the lateral direction. The load was measured with a dynamometer aligned with the chord axis. The maximum bending moment in the brace was taken as the load in the dynamometer times the distance from the chord centreline to the restrained end of the braces. The load was measured by a 500 kN or 2000 kN dynamometer. The strain gauges on the braces were used to verify the applied bending moment. The out-of-plane bending moment was applied by a tensile bar at the end of the braces. The load was applied at each brace end using jacks. The jack loads were kept the same by use of a system which monitors the loads applied and adjusts as necessary. The applied load was measured at each end by a 200 kN or 800 kN dynamometer. The strain gauges on the braces were used to verify the applied bending moment. C14100R020 Rev 1 February 1997 Page 41 of 98 Figure 4-2: Test rig for DT-joints Page 42 of 98 ### 4.4 <u>Data Recording</u> During testing, discrete measurements were taken of: - relative displacement between chord and brace from which local joint flexibility could be obtained; - displacement at two points along brace from which rotation could be calculated; #### strains: - for the axial compression load case: (load cell and strain gauges on brace); - for the axial tension load case: (tensile bar strain gauges and strain gauges on brace); - for the in-plane bending moment case: (load cell for applied load and strain gauges on brace); - for the out-of-plane bending moment case: (load cell of applied load and strain gauges on brace); The measurement of displacements, strains and loads were performed by means of HP dataloggers and a micro-computer. ## 4.5 <u>Testing Sequence</u> The DT-joint test specimens were first tested in the as-welded condition in the following sequence: DT4, DT8, DT5, DT2, DT9, DT6 and DT3. After the testing of the DT-joints, the test rig was modified to accommodate the T-joints which were then tested in the as-welded condition in the following order: T9, T3, T5, T7 and T1. After grouting of the specimen chords, the specimens were tested in the following order T7, T1, T5, T9, T3, DT4, DT8, DT5, DT8, DT9, DT6 and DT3. C14100R020 Rev 1 February 1997 Page 43 of 98 The following loading sequence was used to generate strain gauge data for the aswelded (ungrouted) specimens: - Application of ten cycles of in-plane bending load on the brace at 15-20% of the (ISO) predicted ultimate load of the ungrouted joint subjected to in-plane bending. - 2. Application of in-plane bending load to the brace in three equal increments, up to the applied load in step 1. After each load increment, strain gauge measurements, displacements and applied load were taken. Subsequently, the load was reduced in three equal stages back to zero, taking measurements at each load level. - 3. Repetition of steps 1 and 2 for out-of-plane bending, axial compression and axial tension. Prior to testing of the specimens in the grouted condition, an investigation on the effects of preload on local strain measurement was carried out in order to establish an appropriate level of maximum preload to apply to the grouted joint specimens. This investigation is discussed in Section 7. With the exception of specimen T7, which was utilised for the conduct of the above mentioned preload investigations, the loading sequence for the grouted specimens was as follows: - Application of ten cycles of in-plane bending load on the brace at 15-20% of the (ISO) predicted ultimate load of the ungrouted joint subjected to in-plane bending. - 2. Application of in-plane bending load to the brace in three equal increments, up to the applied load in step 1. After each load increment, measurements of strain, displacement and applied load were taken. The load was then reduced in three equal stages, taking measurements at each load level. Page 44 of 98 - 3. Repetition of steps 1 and 2 for out-of-plane bending, axial compression and axial tension. - 4. Application of an axial compression and tension load of 65% of ungrouted ultimate load. - 5. Repetition of steps 1,2 and 3. - 6. Application at an axial compression and tension load of 130% of ungrouted ultimate load. - 7. Repetition of steps 1,2 and 3. - 8. Conduct ultimate bending capacity test (ipb or opb). Page 45 of 98 ### 5 DETERMINATION OF STRAIN CONCENTRATION FACTORS ## 5.1 Nominal Strains The nominal strain is defined as the maximum elastic strain on the OD of the tubular assuming that the brace behaves as a beam (M/Z) or axial (P/A) member. For the bending load cases, the moment was determined as the load applied at the brace end times the distance to the intersection of the chord and the brace. ### 5.2 Hot Spot Strain and SNCF The procedure for the determination of the hot spot strain was an extrapolation of strains from a defined region adjacent to the weld, defined as the extrapolation region, see Figure 5-1. The extrapolation region was defined by a specified minimum and maximum distance from the weld toe of the joint, in such a way that the effects of the global geometry of the weld (flat, concave, convex) and the condition at the weld toe (angle, undercut) were not included in the hot spot strain. Figure 5-1: Extrapolation region C14100R020 Rev 1 February 1997 Page 46 of 98 The adopted extrapolation region is defined by the following minimum distance $(l_{r,min})$ and maximum distance $(l_{r,max})$ from the weld toe as a function of the chord and brace dimensions, # Chord Side • $l_{r,min} = 0.4T$ but not less than 4mm for crown and saddle • $l_{r,max} = 0.4 (rtRT)^{1/4}$ for crown • $l_{r,max} = R\pi 5/180$ for saddle #### **Brace Side** • $l_{r,min} = 0.4t$, but not less than 4mm for crown and saddle • $l_{r,max} = 0.65 (rt)^{1/2}$ for crown and saddle The hot spot strain was determined by parabolic curve fitted through data points and parabolic extrapolation to the weld toe. The extrapolation was based on the strain component perpendicular to the weld. The SNCF value was calculated by the ratio of the hot spot strain divided by the nominal strain. C14100R020 Rev 1 February 1997 Page 47 of 98 a = 0.4t but not less than 4mm b = 0.4T but not less than 4mm Figure 5-2: Minimum and maximum distance from the weld toe Page 48 of 98 # 6 OVERVIEW OF GROUTED TUBULAR JOINT BEHAVIOUR ### 6.1 General The following sections present a technical appraisal of the behaviour of grouted tubular 'T' and 'DT' joints. Section 6.2 discusses in general terms the reduction in SCFs (Stress Concentration Factors) for the various load cases. Stress Concentration Factors (SCFs) are to some extent dependent on the previous loading history for grouted tubular joints. Under tensile loading or on the tension side of in-plane or out-of-plane bending, some level of local separation and yielding occurs giving rise to the notion of SCF dependency on preload. This aspect is discussed further in Section 6.3. ## 6.2 Load Case Effects The presence of grout significantly stiffens the chord member in the beam bending sense, restricts ovalisation of the chord and restricts chord wall deformations. The presence of grout has the effect of providing a more even distribution of stresses around the joint intersection. For the majority of specimens tested this resulted in an increase of SCF for the grouted condition at the crown location. The effect of grout on SCFs for the various load cases are discussed in more detail below. ### 6.2.1 Axial Loading Reduced grouted SCFs, compared to as-welded SCFs, exist at the saddle location. Resistance to axial loading at this location is predominantly by chord wall bending for small β ratio joints, and membrane action for high β ratio joints. The presence of grout restricts chord wall deformations and ovality and therefore results in			
a reduction in SCFs. Behaviour is similar for the chord side and brace side. An increase in SCFs, over as-welded SCFs, particularly for compressive loading is present at the crown location due to the increased stiffness afforded by the grout, C14100R020 Rev 1 February 1997 Page 49 of 98 which attracts additional load. Behaviour is similar for the chord side and brace side. ## 6.2.2 <u>In-plane Bending</u> The reduction in SCFs for in-plane bending loads is low on the chord side, given the greater relative stiffness at crown locations viz a viz saddle locations. The presence of grout causes the neutral axis to shift towards the compressive side of the crown. Therefore, the reduction in SCFs differs between the tension side and the compressive side of the brace as indicated in the test results. # 6.2.3 Out-of-Plane Bending The reduction in SCFs is similar to that for in-plane bending loading. Again, the reduction in SCFs differ between the tension side and compressive side of the brace. #### 6.3 Preload Effects Preload is defined here as the load history a particular joint has been subjected to. Preload and its magnitude and load sign have been seen to affect SCFs for a grouted joint. Preload investigations carried out by Veritec⁽¹⁵⁾ indicated that a threshold SCF value existed for double skin grouted joints. The SCF threshold value is defined as being the highest SCF measured for any preload. The SCF threshold value was obtained by steadily increasing tensile preload prior to SCF measurements at lower loads, until a drop in the measured SCF was observed. It was observed that substantial yielding occurred at the hot spot location for that preload which gave the SCF threshold value. It was found that measured SCFs in specimens which had received reversed preloads, i.e. tension and compression, were larger than in those which had experienced uni-directional preload. C14100R020 Rev 1 February 1997 Page 50 of 98 The Veritec work also measured residual strains as the specimens went through the first SCF measurement cycle. These residual strains increased as the preload levels increased. Subsequent shake-down procedures were adopted. A number of cycles, at a load corresponding to a maximum stress less than the yield stress at the hot spot location, were applied until the measured residual strain was less than 1%. For the joint types tested in this test programme, the behaviour for the fully grouted test specimens has shown that the grouted SCF remains constant at increasing preload levels, for tension loading. This is the case for the tension side of bending load cases and at all gauge positions for the axial tension case. Conversely, the grouted SCF begins to increase above 60% preload (as-welded ultimate tensile capacity) on the compressive side for the bending load cases and for the majority of gauge positions for the axial compression case. In this instance, the SCF increases to a greater extent at the chord saddle location. Section 7 presents the results in more detail. C14100R020 Rev 1 February 1997 Page 51 of 98 #### 7 TEST RESULTS # 7.1 Preload Investigation Results on Specimen T7 Specimen T7 was subjected to preload under compression/tension levels from 20% to 130% of ISO predicted as-welded joint capacity in steps of 10% to 20%. Figure 7-1 summarises the SNCF measurement and preloading sequence. Appendix J contains a detailed description of the test sequence for the preload investigation. SCNFs were determined for T7 at several preload levels. Figures 7-2 to 7-5 present a summary of the results contained in Appendix K, which contains further details of the SNCF measurements taken. Figure 7-2 presents the in-plane bending SNCFs for brace and chord crown positions as a function of the axial preload level expressed as a percentage of the mean ultimate strength of the joint as given by ISO code. After 60 % preload, the SNCFs at the compression loaded side of the chord crown position increase marginally. In general the SNCFs remain constant at all SNCF measurement locations. Figure 7-3 presents the out-of-plane bending SNCFs for brace and chord saddle as a function of the axial preload level. After 60 % preload, the SNCFs at the compression side of the chord saddle positions increase. At all other measurement locations the SNCFs remain constant. Figure 7-4 presents the average SNCFs for axial compression loading and are shown for the saddle and crown positions on the brace and chord. After 60 % preload, a significant increase in the SNCFs is indicated for the saddle positions on the chord side. Increases in SNCFs are also found at the chord crown and brace saddle positions. The SNCF at the brace crown location remains constant. Figure 7-5 presents the average SNCFs for axial tension loading and are shown for the saddle and crown positions on the brace and chord. The SNCFs remain constant for all preload levels. C14100R020 Rev 1 February 1997 Page 52 of 98 Figure 7-1: SNCF measurement and preload sequence for specimen 17 The results presented for the preload investigations on Specimen T7, indicate the SNCFs remain constant, for all loading conditions, at preload levels between 15% and 60% of the as-welded predicted mean ultimate joint tensile strength as given by the ISO code. The results also indicate that the SNCFs for the tension side of bending cases and the axial compression case, even at the high preload levels, do not increase beyond the SNCF measured at 60% preload. The SNCFs remain constant, to a large extent, for the axial tension case. The SNCFs increase beyond preload levels of 60% for the axial compression case, and only marginally exceed the SNCFs measured for the axial tension case at 130% preload. Below the 130% preload level, the SNCFs measured for the axial tension case are higher than those measured for the axial compression case. Based on the results obtained from the preload investigation on Specimen T7, the remaining specimens were preloaded in increments up to a maximum level of 130%. SNCF measurements were taken, after each preload increment. ### 7.2 SCF/SNCF ratio With additional strain gauge rosettes mounted on Specimen T7, at one crown and one saddle position on the chord and brace, the actual stresses were determined. Using single strain gauges only a strain concentration can be determined at the hot spot location. However, using rosette gauges, the stress concentration can be determined at the hot spot location. Appendix K contains summary tables of SCF/SNCF ratios for Specimen T7. The SCF/SNCF ratios for the preload levels applied are presented in Figure 7-6, 7-7 and 7-8 for each of the loading conditions. Page 54 of 98 Figure 7-2: SNCFs as function of the axial preload for in-plane bending Figure 7-3: SNCFs as function of the axial preload for out-of-plane bending Page 55 of 98 Figure 7-4: SNCFs as function of the axial preload for axial compression Figure 7-5: SNCFs as function of the axial preload for axial tension Page 56 of 98 Figure 7-6: SCF/SNCF ratios for in-plane and out-of-plane bending as function of the applied preload level. # SCF/SNCF ratio axial compression Figure 7-7: SCF/SNCF ratios for axial compression as function of the applied preload level. C14100R020 Rev 1 February 1997 Page 57 of 98 # SCF/SNCF ratio axial tension Figure 7-8: SCF/SNCF ratios for axial tension as function of the applied preload level. C14100R020 Rev 1 February 1997 Page 58 of 98 From the results in Figure 7-6, it would appear that the SCF/SNCF ratio should remain constant at all measurement locations through the range of applied preload levels for axial tension and axial compression loading conditions. Figure 7-7 and Figure 7-8 also demonstrate this to a degree. It is therefore concluded that the variations seen in Figure 7-7 and Figure 7-8 can be attributed to malfunctioning gauges and/or mis-readings. Figure 7-6 demonstrates stability in the SCF/SNCF ratio for both the tension side and compression side of bending load through the full range of applied preload levels. The visible peak experienced by the brace saddle location gauges, for out-of-plane bending, can be attributable to a mis-read gauge. The results indicate that the grouted SCF/SNCF ratios range between 1.10 and 1.37 at the 50% preload level for all loading modes. The average grouted SCF/SNCF ratio was approximately 1.2 which was subsequently used for the conversion of grouted SNCFs to grouted SCFs for all specimens. The 1.2 ratio was also utilised as the factor for converting the as-welded SNCFs to as-welded SCFs. ## 7.3 As-welded SNCF Results and Measurements As-welded SNCF measurements were taken for all specimens for in-plane bending, out-of-plane bending, axial compression and axial tension load cases, in turn. SNCFs were measured in the above noted sequence, since in-plane bending typically results in the lowest SNCFs and axial tension typically gives rise to the highest SNCFs, i.e. the sequence was chosen so that load cases would have minimal effect on the next load case SNCF measurement. Prior to each SNCF measurement load case, a minimum of ten cycles of that load were applied to 'shake' out any residual strains. SNCF measurements were taken in three equal increments up to approximately 20% of the ISO predicted as-welded ultimate joint capacity for that load case. SNCF measurements were also taken in three equal increments as the load was reduced back to zero. The SNCF measurements were repeated for each load case considered. C14100R020 Rev 1 February 1997 Page 59 of 98 SNCFs are presented for the tension side and compression side of the bending load cases to enable comparison to the corresponding grouted SNCFs contained in Section 7.4. Appendix L contains the full set of SNCF measurements taken for each of the test specimens. ### 7.3.1 <u>T-Joints</u> A summary of the SNCF results for the T-joints are presented in Table 7-1 for inplane bending loading, Table 7-2 for out-of-plane bending loading, Table 7-3 for axial			
compression loading and Table 7-4 for axial tension loading. Specimen T9 was investigated twice. It was placed in the test rig and loaded in all four loading modes twice in order to determine any possible influence of assembly/disassembly of the test specimen into the test rig on the load and strain measurements. The second investigation is marked by '(s) second'. The full results of this exercise are presented in Appendix L. However, little influence of assembly/disassembly was found as can be inferred from an inspection of Table 7-1 to 7-4.			
-----------	-----------	-----------	-----------
and tension preload Page 70 of 98	Preload	Loadcase	Br
on a platform could well be subjected to cyclic loading which causes alternating tension and compression loading at a hot spot location. The hot spot stress range is more accurately calculated using the average SNCF (SCF) value rather than either the tension side value alone or the compression side value alone. Table 7-25 presents the Reduction Factors derived using the measured grouted SNCFs over the measured as-welded SNCFs. In the grouted condition there is a reduction in SNCF at the saddle location for out-of-plane bending and axial tension, on the chord side and brace side. There is also a reduction in SNCF at the crown location for in-plane bending on the chord side. The brace side SNCF however, increases for in-plane bending. Also, the SNCF at the crown location generally increases for axial tension and axial compression on both the chord side and brace side. For some joints the SNCFs for the grouted condition are significantly higher than SNCFs for the as-welded condition, i.e. the RF is above unity, at brace crown locations for all pertinent load cases. The largest RF recorded at the brace crown location is 4.43, despite excluding four factors in excess of 10 due to the near zero values of the as-welded SNCF. In the grouted condition the SNCFs increased, but do not represent the critical SNCF for the grouted condition. For the chord side crown, the absolute highest recorded factor is 3.53. # 7.5 <u>Ultimate Strength Test Results and Measurements</u> C14100R020 Rev 1 February 1997 The specimens were loaded up to failure in in-plane or out-of-plane bending, see Table 7-26. The load-rotation plots for the ultimate load tests are presented in Appendix N. Pictures of the failure modes are presented in Appendix O. Page 74 of 98	'n	_	
brace side in all four loading conditions. The saddle and crown positions are presented separately for the axial tension and compression cases. #### 8.4 Measured vs Predicted Reduction Factors Table 8-4, presents a summary of predicted and measured RFs. This table was generated using the measured grouted SCFs contained in Table 8-3 divided by the measured as-welded SCFs contained in Table 8-1. Table 8-4 also presents the predicted RFs as derived using equations developed in Appendix Q and Appendix R. #### 8.5 <u>Ultimate Strength</u> Table 8-5, presents a summary of the measured results for the ultimate strength test and the predicted failure loads using formulations from Design Recommendations⁽¹⁶⁾. The predicted values give good correlation to the measured values. It is noted that five of the specimens failed with a true joint failure. The remaining seven specimens failed with a brace failure, with the exception of specimens T3 and DT3 which reached test rig capacity. These seven specimens were, however, extremely close to joint failure and are therefore of interest. The ratios of predicted to measured capacities are therefore shown in italics for these seven specimens. Page 80 of 98 C14100R020 Rev 1 January 1997	-	_	_
0.87	0.95	0.92	0.80
29.4			29.4
F07	246		223
TENS (Crown)	10.33	-10.0	-0.34
A 11 Weld Shape Specimen T5			Appendix A 12 Weld Shape Specimen T7
voltage	Ges Virsin,	HE, KJ/mm,	ROL/mm.
--	------	------	
--	-------		C;9
I,11	S,13	1,15	
2.4 Grouting the Tubular Joints This operation shall follow immediately after successful filling of the chord with water. C14100R006 Rev 2 January 1995 Page 5 of 10 #### 2.4.1 Mix grout Grout shall be mixed to a specific gravity of 2.02 ± 0.02 for Oilwell or Portland cement (see Section 3.2 for cement specification). Confirmation of the specific gravity shall be carried out using a pressurised mud-balance. If acceptable, samples will be taken for grout cubes. If the specific gravity is not within the limits specified above, grout shall be mixed until desired density is achieved. Samples for grout cubes will then be taken. See Section 3 for mixing, sampling and testing of grout. #### 2.4.2 Grouting operation - Ensure grout inlet hose is free of any obstructions, 'kinks' or 'crimps' when connected to test specimen. - Open inlet valves. - Begin pumping grout through the inlet hose. Pump continuously. - When good consistency grout flows from the chord outlet point, continue pumping slowly, and take density measurements. - Following confirmation of satisfactory grout densities, stop pumping, and close inlet valves. Disconnect quick release coupling and reconnect to next specimen. Open inlet valves and begin pumping. When good consistency grout flows from the outlet point, continue pumping slowly and take density measurement. Repeat this cycle for subsequent tubular joints. - Once all tubular joints are grouted, disconnect grout inlet at quick release union connection, open valve connected to inlet line and pump water down the grout inlet line, to flush. #### 2.4.3 Short stoppages If a blockage occurs during grouting of a specimen, adopt the following procedure:- Stop pumping Close both inlet valves at inlet point. Disconnect grout line at quick release union connection. Open grout line inlet valve. Begin pumping slowly. C14100R006 Rev 2 January 1995 Page 6 of 10 If no grout flows, change the inlet grout hose. If grout flows, the problem is not in the hose. Therefore, it is a fault either in the inlet valve, the outlet hose or in the tubular specimen. Reconnect grout inlet and open inlet valve. Begin pumping. If grout does not flow, then a piece of wire inserted through the outlet point may prove successful in removing any blockage there. If grout still does not flow then the blockage is at the inlet valve or within the tubular specimen and the following course of action may be taken. • Abort the grouting operation, remedy the fault at the inlet valve or from within the tubular specimen and instigate flushing procedures. Specimens successfully grouted prior to blockage, shall remain grouted. #### 2.4.4 Longer stoppages In the event of a grout flow problem or delay during grouting operations of a specimen, where such delays may exceed <u>one hour</u>, chord flushing procedures must start. #### 2.4.5 Flushing procedure Flushing must be carried out if grout flow problems occur which may delay operations for more than one hour. Specimens successfully grouted prior to blockage, shall remain grouted. - (i) Disconnect grout inlet at quick release union connection, open valve connected to inlet hose and flush inlet hose. Wash out grout mixer. - (ii) Inspect all valves and 'rake out' where necessary. - (iii) Flush specimen through either the inlet or outlet points. #### 2.5 Post Grouting Procedure Immediately after satisfactory grouting, close all inlet valves, disconnect at quick release union, open valve connected to inlet hose and flush the grout inlet line. Page 7 of 10 NSI. #### 3. GROUT MIX AND TESTING SPECIFICATION #### 3.1 <u>Design Requirements</u> All grout to be used shall achieve a minimum compressive strength of 41.4 N/mm² (6000 psi) at 28 days. #### 3.2 Materials Cement shall be class 'B' or 'G', moderate sulphate resistant oilwell cement to API Spec 10. Alternatively, moderate sulphate resisting Portland Cement to ASTM C150 Type II may be substituted and used in the same proportions. Manufacturer's Certificates of Quality with respect to the materials shall be obtained before use. The cement shall be stored and transported in accordance with the manufacturer's instructions. The cement shall be kept free from moisture at all times and a careful visual inspection of all materials shall be made prior to their use to ensure their suitability for the work. Cement shall be stored out of direct sunlight. Drinkable water is to be used for mixing, with a temperature not exceeding 20°C. #### 3.3 Grout Mix Proportions The grout mix shall be as follows:- Cement 100 parts by weight Water 34 parts by weight (for Oilwell or Portland cement) #### NO ADMIXTURES SHALL BE PERMITTED Figure 3 shows the rate of gain of strength for Oilwell 'B' grouts cured at 8°C (46°F). This is based upon extensive onshore and offshore test data collated from many years of grouting experience. C14100R006 Rev 2 January 1995 Page 8 of 10 #### 3.4 Grout Mixing The grout shall be mixed using a suitable mixer (eg. Craelius CEMIX 175 or Colcrete DD4). An initial mix shall be made to line the mixer. This mix shall be discarded. Subsequent batches shall be used to grout the specimens. All batches shall be mixed for a minimum of two minutes. ## 3.5 Slurry Density Measurements Measurement of slurry densities shall be made using a pressurised slurry density balance in the manner described in API Spec. 10. Particular attention shall be paid to ensure that the external surfaces of the balance are cleaned and dried after filling and prior to balancing. Grout shall not be pumped until a specific gravity within the limits noted in Section 2.4.1 is achieved. Slurry densities shall be checked immediately prior to pumping and throughout the grouting operations, sampling every batch mixed. # 3.6 <u>Cube Preparation and Curing</u> Cubes shall be cast in accordance with API Spec. 10, with the exception that 75mm (3 inch) cubes shall be used. The cubes shall be placed in polyurethane bags immediately after casting and cured with and at the same temperature as the grouted joints until removed for demolding or testing. Cubes may be demolded after 24 hours, during which the time out of the bags must not be more than 1 (one) hour. At or after 28 days, cubes shall be weighed, measured and crushed within 30 minutes of removal from the bags. The cube age shall be measured from the time the cube is struck to the time it is crushed. Each cube shall be marked with a unique mark and this mark correlated with the batch number, specimen number, time and date made and slurry density, as measured by a pressurised slurry density balance. ## 3.7 Sampling and Testing Procedures For each batch 4 No cubes are to be cast from the grout in the grout mixer. From the 4 N° cubes cast from the grout in the mixer, three (3 N°) cubes shall be tested at 28 days. An additional 8 No cubes are to be cast for each grouted test specimen. C14100R006 Rev 2 January 1995 Page 9 of 10 From the 8 No cubes cast with each specimen; Three (3 N°) cubes shall be tested at or after 28 days on the commencement of SCF tests on each grouted specimen. Three (3 N°) cubes shall be tested at the commencement of ultimate strength tests on each grouted specimen. Each cube shall be crushed in accordance with the procedure given in API Spec. 10, except that the rate of loading will be no faster than 14 N/mm² per min (2000 lbf/in² per min). The following information shall be collated for the final report:- - Test specimen identification reference - Cube identification reference - Time and date of casting of the cube and test specimen - Time and date of testing of the cube and test specimen - Fluid grout density at time of casting - Weight and density of the grout cube - Failure load and cube strength - Average strength from 3 No cubes tested at 28 days. - Average strength from the 3 N° cubes tested at commencement of SCF test on each grouted specimen and 3 N° cubes tested at commencement of ultimate strength test on each grouted specimen. #### 3.8 Equipment Calibration certificates are to be supplied for all weighing, balancing, cube making and cube crushing equipment. C14100R006 Rev 2 January 1995 Page 10 of 10 **FIGURES** C14100R006 Rev 2 January 1995 MSL #### NOTES:- - 1. DIMENSIONS TO ALLOW CLEARANCES TO OPERATE VALVE HANDLES. 2. ALL VALVES TO BE 1½ BALL VALVES. FIGURE 2.1. ARRANGEMENT OF CHORD GROUT INLET. FIGURE 2.2. ARRANGEMENT OF CHORD GROUT OUTLET. vel APPENDIX C Grout Material Properties C14100R020 Rev 1 February 1997 # APPENDIX C # **Grout Material Properties** Table of contents	Table of contents		
42.30	37.00	41.50	
168.10	168.80		2
23.0	;	7	24.0
interpolation of the last strain gauge positions for the crown and saddle positions. The distance to the side of the chord for the nominal brace strain gauges are given in Table G-2. The reference numbers for the gauge positions are given in Figure G-1. Figure G-1: Position of strain gauges at intersection of brace and chord Note: • Strain gauge positions at 30° intervals. • Locations 2, 4, 6, 8, 10, 12, 14 and 16 represent intermediate gauge positions. MSL Figure G-2: Strain gauge rosettes placed besides the strip and single gauges (T7)	Specimen	CHO	ORD
4.0	17.0	4.1	26.0
predicted ultimate load of the grouted joint for the load condition under investigation.		7	Grouted
-6.22	-0.04	4.63	0.7
1.16	1.26		axi-c
13,95	4.65	4.61	
axi-t	0.0108	1.23	11.98
load levels are presented in the tables. The SCF/SNCF ratio as calculated from the strain rosettes is presented in Table K-27. Table K-25: Measured SNCFs on intersection of brace and chord for T7 at ninth cycle.		level	BC;1
4.53	1.53	1.42	
5.7	-0.08	-7.61	
5.99	-1.83	-4.2	0.04
----------	-----------	-----------	-----------
-------	-------		ipb 1/3
second cycle. Table L.21: Measured SNCFs on intersection of brace and chord for T9-second	Dec	T9-s	BC;1
4.62 - 2.08 1.7 2.44 axi-t 2/3 2.83 3.55 5.59 7.64 4.57 1.93 1.67 2.38 axi-t 1/3 2.91 3.58 5.4 6.00			
2/3	-0.0209	-0.1089	1.62
4.61 2.94 5.55 axi-c 3/3 -0.0317 -0.1651 1.66 3.48 1.67 2.76 2.49 4.56 2.95 5.55 axi-c 2/3 -0.0209 -0.1089 1.6 4.64 1.58 3.84 3.27 5.74 3.8 7.35 axi-f 1/3 -0.0105 -0.0545 0.74 6.99 1.48 5.82 2.55 7.93 4.1 10.13 axi-f 1/3 0.0211 0.0881 0.65 5.29 0.45 5.28 1.57 6.15 1.78 8.96 axi-f 3/3 0.0319 0.1328 0.68 4.54 0.64 4.08 1.48 5.23 1.95 6.68 axi-f 3/3 0.0318 0.1326 0.66 4.14 0.78 3.39 1.43 4.83 1.92 5.48 axi-f 2/3 0.0212 0.0883 0.66 4.14 0.78 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.81</td> <td>3.88</td> <td>2.97</td> <td>5.54</td> <td></td> <td></td>			
-0.86	-2.42	-0.04	0.19
-2.31	-1.63	-0.17	
1.58	-0.75	-2.87	-1.04
on intersections of brace 1,2 and chord for DT5 at preload level of 50%	DT5	pl. cap	design
3.98		axi-t 2/3	0.0224
6.22		axi-t 2/3	0.0221
0.31	0.83	2.47	
-0.1717	0.07	-0.38	-0.73
-0.05	4.33		opb 3/3
1.28	-0.18	-0.48	-1.33
-0.1908	-0.31	3.81	-0.09
-0.69	-0.76	0.03	
-2.34	-4.58	-1.56	-0.65
-0.1115	-0.08	-0.89	-2.01
Deformation DT9 Figure P-13: Local bending joint deformation of specimen DT9 #### Local Axial Joint Deformation DT9 Figure P-14: Local axial joint deformation of specimen DT9 # Appendix P-9 Local Joint deformation of T1 ## Local Bending Joint Deformation T1 Figure P-15: Local bending joint deformation of specimen T1 ## Local Axial Joint Deformation T1 Figure P-16: Local axial joint deformation of specimen T1 Page P10 a real programme and a first a common Appendix P-10 Local Joint deformation of T3 ## Local Bending Joint Deformation T3 Figure P-17: Local bending joint deformation of specimen T3 ### Local Axial Joint Deformation T3 Figure P-18: Local axial joint deformation of specimen T3 Page P11 ## Appendix P-11 Local Joint deformation of T5 ## **Local Bending Joint Deformation T5** Figure P-19: Local bending joint deformation of specimen T5 ## Local Axial Joint Deformation T5 Figure P-20: Local axial joint deformation of specimen T5 Page P12 ## Appendix P-12 Local Joint deformation of T7 Figure P-21: Local bending joint deformation of specimen T7 #### **Local Axial Joint Deformation T7** 50 40 30 β=0.414 Axial force [kN] -20 -10 -30 20 γ**=**25 com pr -30 -40 tension-gr -50 -1.5 -1.0 -0.5 0.0 1.0 Axial displacement [mm] Figure P-22: Local axial joint deformation of specimen T7 ## Local Bending Joint Deformation T9 Figure P-23: Local bending joint deformation of specimen Figure P-24: Local axial joint deformation of specimen T9 # APPENDIX Q Development of Measured Grouted SNCF/Measured As-welded SNCF Reduction Factors C14100R020 Rev 1 February 1997 #### APPENDIX Q ### DEVELOPMENT OF REDUCTION FACTORS #### Q1 INTRODUCTION This appendix presents the development of formulations to predict the SCF Reduction Factor (RF) for each joint and load type for both the chord and brace side of the weld. The definition of RF from which the formulations are derived is: RF = Measured value of SCF for grouted joint Measured value of SCF for as-welded joint It may be noted that the RFs so derived reduce many of the inaccuracies normally associated with SCF measured values. SCF inaccuracies, for example, may arise from errors in the positioning of strain gauges or slight eccentricities in the loading arrangements. These effects will largely cancel when ratios of the SCFs, as in the case of RFs, are taken. #### Q2 DATA The baseline data are, of course, the measured SCF values of the as-welded and grouted joints. These data are discussed in Section 7 of the main text and also in Appendices L and M. It is noted here that the grouted SCFs used in this appendix relate to the values obtained following the 50% preload cycle. The resulting RFs, found by applying the above definition, are summarised in Table Q1. The table shows the RF for each joint and load type, and differentiates between the saddle and crown position for axially loaded joints. For the sake of completeness, the RFs for the brace side of the weld are also given. In addition to the measured RF values, the values predicted by the formulations given below are also shown in the table. As can be observed, good agreement between the observed and predicted values is indicated across the board except for the axially loaded DT joints at the crown position (this is discussed further below). The data in Table Q1 are presented in a series of figures (Figures Q1 to Q24), each figure relating to a single joint type (DT or T), load type (compression, tension, IPB or OPB) and, the SCF location (saddle or crown). Figures Q1 to Q12 relate to data on the chord side of the weld and Figures Q13 to Q24 to the brace side. Each figure contains three diagrams: - plot of RF vs. β - plot of RF vs. γ - a 3-D representation of RF vs β and γ . The first two plots may have up to three lines, each line corresponding to a constant γ or β parameter. To visualise better these two diagrams, 3-D bar charts are given. Note, however, the bar chart axes are not true to scale (the 'skyscrapers' fall on a 3 x 3 regular matrix associated with the discrete values of β and γ). ### Q3 FITTING OF RF-SURFACES The objective now is to find suitable functions $$RF = f(\beta, \gamma)$$ for the various joint and load types. The functions should capture the shapes of the RF - β - γ surfaces, as illustrated in Figures Q1 to Q24, yet be reasonably simple. An examination of the surface shapes suggests that RFs are not simple functions of β and γ . Some surfaces exhibit a very strong twisted shape, especially for axially loaded T joints, and all surfaces do to some extent. This means that certain types of functions, such as those that increase monotonically (e.g. RF = $a\beta^b$ γ^c or RF = a_0 + $a_1\beta^b$ + $a_2\gamma^c$), prove unsuitable. Figure Q25 illustrates the simplest twisted surface: a twisted plane bounded by four RF values at the corners of the defined region. The equation on this figure is of the form: $$RF = a_0 + a_1\beta + a_2\gamma + a_3\beta\gamma$$ To allow for deviations of additional RF points away from this twisted plane, the two second order terms of β and γ are added to give the following basic equation: $$RF = a_0 + a_1\beta + a_2\gamma + a_3\beta\gamma + a_4\beta^2 + a_5\gamma^2$$ where a₀ to a₅ are constants to be fitted. The above equation has 6 unknown constants whereas for T joints, only 5 data exist (for a given load type). Preliminary fitting trails and the behaviour of DT joints favoured the dropping of the $a_5\gamma^2$ term. The constants were fitted using a multivariate technique based on minimising the sum of the squares of percentage (not absolute) differences between measured and predicted RF values. In general, it was found that the solution obtained during a fitting cycle was dependent on assumed starting values of the constants, to the extent that sometimes divergent behaviour was observed. Application of the equation shown on Figure Q25 resolved all difficulties in selecting suitable starting constants. During the course of fitting trials, the constants were successively rounded off starting with the higher order terms and ending with rounding off the lead constant (a₀) after the final fitting. The goodness of fit was monitored during the fitting process by observing the Coefficient of Variation (COV) of predicted RF to measured RF values and the maximum/minimum errors between the data points and fitted surfaces. ### Q3.1 Chord Side RF Values The results of the fitting process are summarised in Table Q2. The predicted RF values across the full range of β and γ are shown in Figures Q26 to Q37. These figures also show the measured RF values (some of the predicted values have been set to zero to enable low measured RF values to be observed). As can be seen, the predicted RF - β - γ surfaces are sensibly smooth and, on the whole, capture the measured values well. In one instance (DT joint in compression at the saddle position, Figure Q26), the function predicts negative RF values on extrapolation to the high γ , very low β region. It is therefore necessary to set a lower limit on RF. The following lower limit is suggested: $RF \ge 0.10$ Inspection of table Q2 shows that the poorest fit relates to axially loaded DT joints at the crown position for the tension case, see Figure Q29. The high RF values obtained at the crown position for both tension and compression load cases were capped to prevent a poor fit. The RFs were capped to values consistent with the results obtained for both DT and T joint specimens. The resultant fits give good prediction for grouted SCFs. The maximum error on the non-conservative side is 15.3%. The next 'poorest' fit (for DT joint in tension at the saddle position) gives a non-conservative error of only 6.7%. Examining the measured RF data in Figures Q2 and especially Q4, the problem seems to be associated with a deep well in the mid β and γ range, which the polynomial cannot easily model. The fitting process has given a fitted function that is generally non-conservative away from the mid β and γ region. Since this may be unacceptable, new fits were undertaken by ignoring the central data point. The resulting recommended functions for the DT crown cases are shown in Table Q3 along with all other functions. The COV and error band for the DT crown compression case are 0.016 and 2.2/-2.7 respectively; and 0.106 and 15.3/-14.6 for the tension case. The revised RF - β - γ comparison plots are shown in Figures Q38 and Q39. One final comment is worth making. This concerns the relatively high RF values for $\beta=1$ DT joints under axial or OPB loads. For these cases, load transference across the chord is dominated by membrane action (which is why the RF values approach unity) and this membrane action quickly decays as β is reduced from unity. In the fitting process, no attempt has been made to reflect more accurately the rapid decay (indeed, there are no data on which to base a suitable decay function). However, it is noted that the selected RF function will overestimate the RF value at β values approaching unity. The selected RF function is, therefore, conservative. ### Q3.2 Brace Side RF Values A similar fitting exercise was carried out for the brace RF values as was performed for the chord side. The recommended functions for predicting brace side RF values are given in Table Q4. The comparisons of predicted and measured RF values are illustrated in Figures Q40 to Q51. The fitting of the RF- β - γ surfaces usually proceeded without difficulty. However, again, the crown positions of axially loaded DT joints needed specific consideration. An **Mel** examination of the data shown in Figures Q14 and Q16 show that extremely high brace side RF values may exist for joints of intermediate β . The high RF values arise from very low measured as-welded SCF values coupled with the			
above definition of RF. It was considered that a fitted surface to the RF values as they stand would be suspect, and in any case highly dependent on the accuracy of the measured as-welded SCFs. In these cases, therefore, it was decided to treat the high RF values as being somewhat spurious and to replace both the high values at $\gamma = 12$ and 20 by a RF value of unity. Having made these replacements, functions were fitted and these are compared with the original data in Figures Q41 and Q43 for the compression and tension cases respectively. The high measured RF values are approximately an order greater than corresponding predicted RF values and, therefore, the latter are potentially very non-conservative. Indeed they would be if applied to measured as-welded SCFs for estimating grouted SCFs. The predicted RFs are quite conservative, however, when used in conjunction with calculated as-welded SCFs from the Efthymiou set of parametric equations, see Tables Q5 to Q8. ### Q4. Concluding Remarks Tables Q5 to Q8 present a comparison of predicted and measured as-welded and grouted SCFs for the two joint types at all locations. Of note are the predicted grouted SCFs derived using predicted RFs, from joint parameters, with measured as-welded SCFs and Efthymiou predicted as-welded SCFs. The results demonstrate that for a number of joint configurations, the crown SCF becomes critical, in the grouted condition, and even supercedes the highest as-welded SCF.	Specimen	Q	-
Reduction Factors on Chord Side	Joint Type	Load (Position)	a ₀
Crown		Crown	Saddle
Measured Values for DT Joints under Compression, Chord Crown (Final) Fig. Q29: Comparison of Fitted Surface with Measured Values for DT Joints under Tension, Chord Saddle S MACIAINAKRAPRESEN.XLS/DT AX-5 Ten Fig. Q30: Comparison of Fitted Surface with Measured Values for DT Joints under Tension, Chord Crown (Interim) Fig. Q31: Comparison of Fitted Surface with Measured Values for DT Joints under Tension, Chord Crown (Final) S MACI 41 WARDENESEN XLSODT AX-5 Ten Fig. Q32: Comparison of Fitted Surface with Measured Values for DT Joints under IPB, Chord Crown Fig. Q33: Comparison of Fitted Surface with Measured Values for DT Joints under OPB, Chord Saddle S MACI 41/akg/PRESEN XLSADT OPB Fig Q34: Comparison of Fitted Surface with Measured Values for T Joints under Compression, Chord Saddle Fig. Q35: Comparison of Fitted Surface with Measured Values for T Joints Compression, Chord Crown S MAC141/akg/PRESEN.XLS/T Ax Comp Fig Q36: Comparison of Fitted Surface with Measured Values for T joints under Tension, Chord Saddle Fig. Q37: Comparison of Fitted Surface with Measured Values for T Joints under Tension, Chord Crown Tell Axe Ten Fig. Q38: Comparison of fitted Surface with Measured Values for T Joints under IPB, Chord Crown S M.YC.141 WARDRESEN XLST IPB Fig. Q39: Comparison of Fitted Surface with Measured Values for T Joints under OPB, Chord Saddle Fig. Q40: Comparison of Fitted Surface with Measured Values for DT Joints under Compression, Brace Saddle S. M. (C141) shet DR ECENB VI CORT 4 to 1 Fig. Q41: Comparison of Fitted Surface with Measured Values for DT Joints under Compression, Brace Crown S M:AC141\akg\PRESENB.XLS\DT AX-c Comp Fig. Q42: Comparison of Fitted Surface with Measured Values for DT Joints under Tension, Brace Saddle Fig. Q43: Comparison of Fitted Surface with Measured Values for DT Joints under Tension, Brace Crown Fig. Q44: Comparison of Fitted Surface with Measured Values for DT Joints under IPB, Brace Crown Fig. Q45: Comparison of Fitted Surface with Measured Values for DT Joints under OPB, Brace Saddle Fig Q46: Comparison of Fitted Surface with Measured Values for T Joints under Compression, Brace Saddle Fig. Q47: Comparison of Fitted Surface with Measured Values for T Joints Compression, Brace Crown Fig Q48: Comparison of Fitted Surface with Measured Values for T joints under Tension, Brace Saddle Fig. Q49: Comparison of Fitted Surface with Measured Values for T Joints under Tension, Brace Crown Fig. Q50: Comparison of fitted Surface with Measured Values for T Joints under IPB, Brace Crown Fig. Q51: Comparison of Fitted Surface with Measured Values for T Joints under OPB, Brace Saddle S MACHINAR APPRESENB. XLSATOPB ## APPENDIX R Development of Measured Grouted SNCF (x 1.2)/Efthymiou As-welded SCF Reduction Factors C14100R020 Rev 1 February 1997 #### APPENDIX R #### DEVELOPMENT OF REDUCTION FACTORS #### R1 INTRODUCTION This appendix presents the development of formulations to predict the SCF Reduction Factor (RF) for each joint and load type for both the chord and brace side of the weld. The definition of RF from which the formulations are derived is: RF = Measured value of SCF for grouted joint Efthymiou derived SCF for as-welded joint ### R2 DATA The baseline data are the measured SCF values of the grouted joints and the as-welded SCF values derived using Efthymiou parametric equations. These data are discussed in Sections 7 and 8 of the main text and also in Appendices M and S. It is noted here that the grouted SCFs used in this appendix relate to the values obtained following the 50% preload cycle. The resulting RFs, found by applying the above definition, are summarised in Table R1. The table shows the RF for each joint and load type, and differentiates between the saddle and crown position for axially loaded joints. For the sake of completeness, the RFs for the brace side of the weld are also given. In addition to the measured RF values, the values predicted by the formulations given below are also shown in the table. As can be observed, good agreement between the observed and predicted values is indicated across the board. The data in Table R1 are presented in a series of figures (Figures R1 to R24), each figure relating to a single joint type (DT or T), load type (compression, tension, IPB or OPB) and, the SCF location (saddle or crown). Figures R1 to R12 relate to data on the chord side of the weld and Figures R13 to R24 to the brace side. Each figure contains three diagrams: - plot of RF vs. β - plot of RF vs. γ - a 3-D representation of RF vs β and γ . The first two plots may have up to three lines, each line corresponding to a constant γ or β parameter. To visualise better these two diagrams, 3-D bar charts are given. Note, however, the bar chart axes are not true to scale (the 'skyscrapers' fall on a 3 x 3 regular matrix associated with the discrete values of β and γ). The philosophy adopted for those RF functions derived in Appendix Q also apply to the functions derived in this Appendix R. The resultant RF functions, albeit including additional terms, perform well. # R3. Concluding Remarks Tables R4 to R7 present a comparison of predicted and measured as-welded and grouted SCFs for the two joint types at all locations. Of note are the predicted grouted SCFs derived using predicted RFs, from joint parameters, with measured as-welded SCFs and Efthymiou predicted as-welded SCFs. The results demonstrate that for a number of joint configurations, the crown SCF becomes critical, in the grouted condition, and even supercedes the highest as-welded SCF. Measured RF values refer to measured grouted SNCFs/Ethymiou as-welded SNCFs. Predicted RF values given by formulations in Tables R2 and R3. Table R1: Summary of Reduction Factors	Joint Type	Load (Position)	a ₀
	OPB	-	12.11
	<u> </u>		
-------	------------	--------	------------
1.000 0.981 25.888 1.000 11.99 Efflyming 4.11 16.83 10.84 9.25 10.84 9.25 10.84 9.25 10.84 9.29 1.89 7.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1		406.96	
12.40 1		i i	_
1.009 1.009)T4	407.05	
十	-	╌	Effkemica
Lloyds/Meas	0.73	⊢	┢
			\downarrow
1.2405 1 | E | 406.30 | | | | | | | | | | | | | Predicted O | ٤ | ٤ | ╀ | + | + | + | + | ┥ | | Ax-c A | Ax-s A | Ax-c | | 3 406.78 407.05 15.39 22.4 16.10 2440 90.0 1.000 12.409 692 11.71 0.982
407.05 273.34 10.19 23.6 9.82 2440 90.0 0.414 25.888 9.49 23.42 1.057 1.057 1.0556 406.36 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 1.05 | | 97.0 | 16./01 | | | | | | | | 9 | 11.71 | 0.996 | 12.00 | _ | _ | 5 5 | 3 5 | _ | - | _ | | | 0.53 4 | 4.53 0. | 0.65 | 3.82 | | 3 406.78 407.02 16.39 29.4 16.10 .2440 90.0 1,000 12.409 6.92 11.71 0.982 7 406.96 16.84.1 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1,057 7 406.96 16.84.1 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1,057 8 406.96 406.96 7.86 21.4 7.86 2440 90.0 1,000 25.888 9.49 23.42 1,057 8 406.96 1.86.96 1.86 2440 90.0 1,000 25.888 9.49 23.42 1,050 1 406.78 1.73.0 16.39 23.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.982 1 4 406.705 168.57 10.19 23.5 2440 90.0 1.001 | | | | | 1 | \downarrow | | _ | | ; | _ | | | | _ | 9 6 | 9 6 | 4. | | | | _ | 0.57 0 | 0.44 0 | 0.42 0. | 0.44 | 0.38 | | 3 406.78 407.02 16.39 294 16.10 .2440 90.0 10.00 12.409 6.92 11.71 0.982 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 1.057 1.056 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 1.000 1.000 1.000 25.888 9.49 23.42 1.000 1.000 1.000 1.000 25.888 9.49 23.42 1.000 1.000 1.000 1.000 25.888 9.49 23.42 1.000 1.0 | | | | | | | | | | | | | _ | | C. T. | | | 3 | ┽ | 4 | 16.0 | 1.01 | 0.89 | 0.56 | 4.43 0. | 0.62 | 3.89 | | 3 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19973 8.62 18.36 0.964 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 168.41 7.86 21.4 8.31 2440 90.0 1.000 25.888 9.49 23.42 1.057 2 406.76 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 3 406.78 7.73 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 1 4 406.76 16.19 23.40 90.0 0.414 19.973 8.62 18.36 0.954 1 4 407.05 168.37 16.10 2440 90.0 0.414 19.973 8.62 18.36 0.954 1 407.0 | س | 406.78 | 407.02 | | | _ | _ | _ | _ | | ν. | = | 60 | | | ₹
5 | 0.27 |
89.0 | | 0.25 | 1.13 | 1.12 | 0.33 0 | H | ╁ | ╀ | = | | 5 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 7 406.96 10.86 10.8 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 2 406.96 10.86 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 2 406.78 407.02 16.39 29.4 15.76 2440 90.0 1.000 15.409 6.92 11.71 0.962 3 406.78 407.02 16.39 29.4 16.10 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 4 406.705 168.57 10.19 23.6 9.52 2440 90.0 0.671 19.973 8.62 18.36 0.964 1 4 407.05 10.19 23.6 9.61 2440 | | | | | | _ | | _ | _ | | ;
— | <u> </u> | 79670 | | | 8 | 0.28 | 0.07 | 1.30 | 0.17 | 36 | | _ | | | _ | - 6 | | 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 16.84.1 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 16.86 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 273.09 16.39 29.4 16.10 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 273.34 10.19 23.6 3.55 2440 90.0 0.414 19.973 8.62 18.36 0.964 1 407.05 173.54 10.19 23.6 2440 90.0 1.001 19.973 8.62 18.36 0.943 | | | | L | | L | | ļ | 1 | \downarrow | 1 | | | \int | Measured | 0.92 | 0.27 | 0.09 | 20. | 0.25 | | - | | _ | _ | | . | | 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 406.96 7.86 21.4 8.31 2440 90.0 1.000 25.888 9.49 23.42 1.057 406.78 273.09 16.39 29.4 15.76 2440 90.0 1.001 12.409 6.92 11.71 0.962 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.55 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 10.19 23.6 9.61 2440 90.0 0.671 19.973 8.62 18.36 0.946 < | | 40.7 0.5 | 27. 27. | | _ | | - | - | _ | | | | | | Predicted O | 0.87 | 0.37 | 0.30 | ╀ | ╁ | + | ┿ | + | 7 | ┥ | ┪ | 80 | | 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.057 2 406.78 473.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 4 406.78 477.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 4 406.78 477.02 16.39 29.4 16.10 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 273.34 10.19 23.6 9.61 2440 90.0 0.672 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.001 | , | 3 | 4.5.7 | | _ | | 2440 | _ | | | • | 18.36 | 0.964 | | Predicted D | | 9 6 | _ | _ | _ | _ | | | 0.34 | 2.07 0. | 0.35 | 1.65 | | 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.050 406.78 273.09 16.39 29.4 15.76 2440 90.0 1.001 12.409 6.92 11.71 0.962 406.78 406.78 16.19 23.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 406.78 407.05 16.19 23.6 3440 90.0 1.001 12.409 6.92 11.71 0.962 407.05 168.37 10.19 23.6 9.82 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 407.05 407.05 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 | 1 | | | | | | | | | _ | | | | | N parameter | 9 | S. O | _ | 1.45 | 0.32 | 1.39 | 0.67 | 0.39 | 0.33 | 105 | _ | 0.70 | | 406.96 168.41 7.86 21.4 8.31 2440 90.0 0.414 25.888 9.49 23.42 1.057 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.050 406.78 273.09 16.39 29.4 15.76 2440 2440 90.0 0.671 12.409 6.92 11.71 0.962 1.001 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 10.19 23.6 9.81 2440 90.0 0.672 19.973 8.62 18.36 0.941 1 407.05 407.60 10.19 23.6 23.6 24.80 90.0 1.001 19.973 8.62 18.36 0.943 1 1 1 1 406.96 273.21 2.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 1 1 1 1 1 406.96 273.21 2.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.003 1 | | _ | | | | | | L | L | - | | | \downarrow | | Measured | 8 | 0.37 | 0.30 | 0.93 | 0.29 | 260 | 124 | | | _ | | 9 1 | | 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.050 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.050 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 173.34 10.19 23.6 9.61 2440 90.0 0.672 19.973 8.62 18.36 0.944 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td>406 96</td><td>168 41</td><td></td><td></td><td></td><td>9</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>Predicted Q</td><td>99.0</td><td>0.48</td><td>0.21</td><td>0.50</td><td>╀</td><td>╀</td><td>╀</td><td>╀</td><td>╁</td><td>+</td><td>4</td><td>6</td></td<> | | 406 96 | 168 41 | | | | 9 | | | _ | | | | | Predicted Q | 99.0 | 0.48 | 0.21 | 0.50 | ╀ | ╀ | ╀ | ╀ | ╁ | + | 4 | 6 | |
406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 406.78 273.09 16.39 29.4 15.76 2440 90.0 1.001 12.409 6.92 11.71 0.962 406.78 273.09 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 173.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.944 1 407.05 407.05 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.944 1 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9. | | ~ | 7 | | | _ | 2440 | | | _ | <u>~</u> | 23.42 | 1.057 | 8 | Predicted R | 0.58 | ** | _ | | | _ | _ | | | 1.37 0.49 | | 30.0 | | 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 273.09 16.39 29.4 16.10 2440 90.0 0.671 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 407.05 173.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.976 407.05 407.05 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.944 1 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.000 | | | | | _ | _ | | _ | | | | | | | Managar | | _ | _ | | | _ | _ | 0.49 0. | 0.20 | 0.62 0.35 | | 0.51 | | 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 406.78 16.39 29.4 16.10 2440 90.0 0.671 12.409 6.92 11.71 0.962 407.05 16.857 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 1 407.05 407.05 407.60 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 < | | | | | | | | | | _ | | | | | TATE CONTROL | è i | + | ┥ | ┨ | 0.47 | 0.71 | 1.22 | 0.74 0. | 0.26 | 1.39 0.48 | | - | | 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962
407.05 168.57 10.19 23.6 9.82 2440 90.0 0.414 19.973 8.62 18.36 0.976
407.05 273.34 10.19 23.6 9.81 2440 90.0 0.672 19.973 8.62 18.36 0.943 1
406.96 273.21 7.86 21.4 7.88 2440 90.0 1.001 19.973 8.62 18.36 0.943 1
406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.003 1 | | 406.96 | 406.96 | | 21.4 | 7.86 | 2440 | 90.0 | | _ | _ | 23.42 | 5 | 8 | Predicted (| X (| | | | | 0.99 | 1.26 | 0.26 | 0.42 | ╁- | +- | 0 07 | | 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 406.78 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.962 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.943 1 407.05 407.60 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | | | | | | | | | | :
 | - | 3 | | rredicted K | 0.73 | 0.32 | 0.30 | 1.03 | 0.31 | 0.95 | 0.73 | 0.25 | | | | ; ; | | 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.982 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.944 1 406.96 273.31 7.86 21.4 7.88 2440 90.0 1.001 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | | | | | | | 1 | | 1 | | | | | Measured | 0.95 | 0.27 | 0.22 | - 60 | _ | _ | | | | _ | | 26.0 | | 406.78 273.09 16.39 29.4 15.76 2440 90.0 0.671 12.409 6.92 11.71 0.962 406.78 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.982 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.944 1 406.96 273.21 7.86 2.14 7.88 2440 90.0 1.001 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | | T | | | | | \downarrow | | | | | | | | | ╀ | ╀ | ╀ | ╀ | + | D | 07.0 | 0.36 | 24 0.29 | + | 94 | | 406.76 406.76 406.76 406.96 7.80 7.000 7.0 | | 40.k 7e | 373.00 | | | | | | | | _ | | | | Predicted () | 0.74 | 6,6 | \ \frac{\x}{2} | ١ | ╁ | + | ╬ | + | 4 | + | \dashv | | | 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.982 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 1 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 1 407.05 407.05 407.60 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.964 1 406.96 273.21 7.86 21.4 7.88 2440 90.0 1.001 19.973 8.62 18.36 0.943 1 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | 2 | 60.07 | | | 9/3 | 2440 | 0.0 | 0.671 | | | 11.71 | 0.962 | 12.00 | Predicted R | 0.80 | | | | | _ | | | 0.35 4.3 | 4.34 0.42 | _ | 1.47 | | 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.982 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 407.05 407.60 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.001 19.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1.000 | T | 1 | 1 | | | | | _ | | | | | | | 1 | 6 6 | | | _ | | | 0.89 | 0.63 0.3 | 0.37 0.8 | 0.88 0.44 | | 0.38 | | 406.78 407.02 16.39 29.4 16.10 2440 90.0 1.001 12.409 6.92 11.71 0.982 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 407.05 407.05 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.001 15.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1.000 1.000 23.42 1.000 1.000 | | | | _ | | | | | | | | | | | Mcasured | ζ.
(C. Δ. | + | 0.39 | 1.57 0 | 0.39 0 | 0.95 | 1.38 0. | 0.74 0. | 0.34 33, | | _ | 10.43 | | 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8 62 18.36 0.976 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8 62 18.36 0.964 407.05 407.05 407.60 10.19 23.6 9.61 2440 90.0 1.001 19.973 8 62 18.36 0.964 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 1 | | 406.78 | 407.02 | 16.39 | | 16,10 | 2440 | 000 | | 12,400 | | | | : | Predicted Q | 89.0 | | 0.92 | 1.91 | 1.02 | 1.40 | 165 | ╀╌ | ╁ | Ļ | ┿ | 1. | | 10.19 23.6 9.95 2440 90.0 0.414 19.973 8.62 18.36 0.976 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 1 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | _ | | | | | | ? | | 204.71 | | -
-
- | 0.982 | 12.00 | Predicted R | 99. | 1.20 | 1.02 | 0.71 | _ | _ | | | _ | | | <u> </u> | | 407.05 168.57 10.19 23.6 9.95 2440 90.0 0.414 19.973 8 62 18.36 0.976 407.05 273.34 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 407.05 407.05 407.60 10.19 23.6 2440 90.0 1.001 19.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 1 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | Г | T | T | | | | | | | | | | | | Measured | 29.0 | 0.97 | 1 26.0 | _ | _ | _ | | | _ | | _ | 14.0 | | 407.05 773.34 10.19 23.6 9.82 2440 90.0 0.414 19.973 8.62 18.36 0.976 407.05 773.34 10.19 23.6 9.81 2440 90.0 1.001 19.973 8.62 18.36 0.964 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 1 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 1 | | 40.7.05 | 148 47 | 9 | į | - 3 | | ; | | _ | | | | | Predicted Q | 0.57 | ╁ | ╀ | ╀ | + | + | ╀ | + | ╁ | 4 | - | Ξ | | 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | } | 5 | | 0.52 | 3.5 | 7440 | 0.08 | 0.414 | | 8.62 | 18.36 | 926.0 | 1.8 | Predicted R | 0.58 | | | _ | _ | _ | | | 0.15 2.39 | 39 0.31 | _ | 8. | | 10.19 23.6 9.82 2440 90.0 0.672 19.973 8.62 18.36 0.964 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | 1 | † | \dagger | T | | | | | | | | | | | Measured | 5 | | | | | | | | 0.13 1.05 | 35 0.25 | 5 0.55 | 55 | | 10.19 23.6 9.87 2440 90.0 0.672 19.973 8.62 18.36 0.964 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | | | | | | | | | | | | | T | Dradioted | | + | 4 | + | + | 4 | 1.35 | 0.85 0.1 | 0.16 2.23 | 23 0.31 | _ | 8 | | 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | 407.05 | | 10.19 | 23.6 | 9.82 | 2440 | 90.0 | 0.672 | 19.973 | 862 | 18 36 | 8 | 2 | ו ובתוכונת | 60 | _ | | | _ | 1.22 | 1.41 | 0.57 0.25 | 25 4.24 | 0 34 | ╀ | ۶ | | 10.19 23.6 9.61 2440 90.0 1.001 19.973 8 62 18.36 0.943 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | 1 | 1 | | | | | | | | | ! | 3 | 5 | | rregicted K | <u>z</u> | | - | 0.85 0. | 0.35 0. | 0.55 0. | 0.82 0. | 0.49 0.26 | _ | | ··· | _ | | 407.05 407.05 407.05 10.19 23.6 9.61 2440 90.0 1.001 19.973 8.62 18.36 0.943 406.96 273.21 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 406.96 406.96 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | | | | | | | | | | Ī | | T | 1 | Measured | 2.0 | 042 |
0.25 0. | 0.48 0. | 0.32 0. | 0.16 | 1.40 | 054 7 023 | | _ | _ | _ | | 7.86 214 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003
7.86 214 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.003 | | 407.05 | | 10.19 | 23.6 | 19.6 | 2440 | 8 | 5 | | ; | : | | | Predicted Q | 09:0 | 0.95 | 0.96 | 2.90 | 0.83 | 28/ | ╀ | ╁ | ╁ | + | + | 31: | | 7.86 21.4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21.4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | _ | | - | | : | 1 | ? | 3 | 2,7/3 | 70.9 | 9
2
2 | 0.943 | 8; | Predicted R | 0.52 | 1.20 | 001 | 0 65 | _ | | _ | | _ | | | | | 7.86 21 4 7.88 2440 90.0 0.671 25.888 9.49 23.42 1.003 7.86 21 4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | † | \dagger | 1 | | | 1 | | | | | | | | | Measured | 0.62 | | | _ | _ | _ | | | | _ | _ | _ | | 7.86 214 7.86 2440 90.0 0.671 25.888 9.49 23.42 1.003 | | - 20 704 | | ò | ; | | | | | | | _ | | - | Predicted O | ╀ | ╁ | ╀ | ╁ | ╁ | + | 1 | + | 1.42 | 2 0.79 | 6 | <u>\$</u> | | 7.86 21 4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | 7 | 17.673 | œ./ | 7 7 | 88. | 2440 | 8 | 0.671 | 25.888 | 9.49 | 23.42 | 1.003 | 8 | Dredicted D | _ | _ | | _ | _ | _ | | 0.46 0.17 | 17 4.17 | 7 0.28 | 133 | <u>ش</u> | | 7.86 21 4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | † | + | 1 | 1 | | | | | | | | | _ | | Vincent, | | _ | _ | | | | 0.76 0.3 | 0.38 0.18 | 1.46 | 6 0.31 | 0.52 | 2 | | 406.96 406.96 7.86 21 4 7.86 2440 90.0 1.000 25.888 9.49 23.42 1.000 | | | | | | | _ | | | | | | T | | INICASSIM CO. | + | + | 4 | 0. | 0.28 | 1.46 | 1.44 0.4 | 0.49 0.18 | 3.83 | 3 - | | | | | | 406.96 | | 7.86 | 21 4 | 28 | 2440 | 006 | 1.000 | 25.888 | 9.49 | 23.42 | | 8 | registed C | | | _ | | | 2.07 | 1.65 0.8 | 0.88 0.94 | ⊢ | ├- | - | , , | | | | _ | | | | | | _ | | | <u>`</u> | 1 | _ | <u>.</u> | Predicted R | _ | _ | _ | 00 | 0.73 | 0.55 0.5 | 0.98 | _ | _ | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | Measured | 0.53 | 0.93 | 3.5 | 3.53 0.6 | 69.0 | | | | _ | , , | 9 6 | _ | Note :- Assumod Stress/Strain relationship = 1.2 Predicted Q values based on RFs given by formulations in Tables Q3 and Q4 Predicted R values based on RFs given by formulations in Tables R2 and R3 Table S.7-10: Summary of RF Results | Braces
Chords | $\beta = 0.413$ | | β = 0.671 | | β = 1.0 | | |---|--|-----|---|-----------|---|-----------| | 406.78×16.39
$\gamma = 12.41$
Fy = 359 | 167.81 x 16.32
$\tau = 1.0$
Fy = 348 | T1 | 273.09 x 15.76
$\tau = 0.96$
Fy = 496 | DT2 | 407.02×16.1
$\tau = 0.98$
Fy = 383 | DT3
T3 | | 407.05 x 10.19
γ = 19.97
Fy = 335 | 168.57 x 9.95
$\tau = 0.98$
Fy = 339 | DT4 | 273.34 x 9.82
$\tau = 0.96$
Fy = 284 | DT5
T5 | 407.6×9.61
$\tau = 0.94$
Fy = 363 | DT6 | | 406.96 x 7.86
γ = 25.89
Fy = 332 | 168.41 x 8.31
τ = 1.06
Fy = 246 | Т7 | 273.21 x 7.88 $\tau = 1.0$ Fy = 329 | DT8 | 406.96×7.86
$\tau = 1.0$
Fy = 332 | DT9
T9 | ## Notes All values are measured All units in (N) and/or (mm) ## **Test Matrix** S E:\C141\MATRIX.XLS